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Abstract

The Wigner function is argued to be the only natural phase space function evolving

classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to

understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing

of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem

to the quantum uncertainties. This makes it possible to deduce features of the quantum

evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

1 Introduction

The Wigner function [1] can be used to get a visual understanding of why certain time-

dependent Hamiltonians induce squeezing of quantum states. We first address the question: Why the

Wigner function, rather than, say, the Husimi function [2]? It will be showed that although other phase

space functions may evolve classically under certain specific quadratic Hamiltonians, the Wigner

function is the only one to do so under quadratic Hamiltonians having a time-dependent bilinear part.

We consider, as an example, squeezing by a periodically modulated harmonic oscillator. We then

discuss a generalization of Ehrenfest's theorem applying to the quantum uncertainties. This allows to

deduce aspects of the quantum evolution, such as squeezing, from the classical evolution even in the

case of arbitrary Hamiltonians.

Phase space variables (position and momentum) are denoted by q and p. A caret is used to

identify operators. Thus, [Cl, P] = i, where we take fi -- 1. The time variable is denoted by t.

2 Quadratic Hamiltonians and phase space functions

Ehrenfest's theorem expresses the time derivatives of the expectations (Cl) and (p) in a way

formally similar to Hamilton's equations. In the case ofa Hamiltonian IYt= _t32/m + V(cl), it reads

d - d -
a'i'(q) = (_)/m, ai"(P) = (F(_I)) (1)
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where F(q) = -0V/0q is the force. If the potential V(q) is quadratic, hence F(q) linear (or, if the

particle is in a state sufficiently localized on the scale of non-harmonic variation of V), then (F(cl)) =

F((/:I)), and (1) become identical to Hamilton's equations, implying that (Cl) and (ia) follow classical

trajectories in phase space. This stays true in the case of a general quadratic Hamiltonian

17t(0 = I211(0 + I_I2(t) (2)

where ISIl(t) is linear, and I?-I2(t) is bilinearin /t and p(_ [3, a,b,c scalar functions of time):

_(t) = Ht((l,[),t) = et(t)Cl + 13(t)_) (3)

ISI2(t) = H2(cl,_),t) = a(t_l 2 + b(t)((_:)+_)Cl) + c(t)I _2 (4)

Can one push this further, and associate with state vectors hl/), or state operators fi, a phase space

function f(q,p,t) whose quantum evolution is classical for such Hamiltonians? That is, such that

_OH 0 OH _ f
_t f(q,p,t) = {H, f}p8 - _-b=_b_-- _-_q) (q,p,t) or f(q,p,t) = f(qt,Pt,0) (5)

where (qt,P0 is the point which classically evolves into (q,p) in the time interval (0,t), under the Hamil-

tonian H(q,p,t). It is natural to ask that f(q,p) be linear in either hl/) or p, so that it has the form

(6)f(q,P; V) = (OqplV) or f(q,p; 13) = Tr{z_ktp9 }

where I¢)qp) and _ are kets and operators parametrized by phase space.

Introduce the unitary time-evolution operator 0(t,t'), defined by

_t 0(t,t') = -iISI(t)0(t,t'), _t' 0(t,t') = i0(t,t')ISI(t'), 0(t,t')U(t',t) = 0(t,t) = (7)

and similarly 01 and 0 2 corresponding to I7tl and I7t2. Let us first assure classical evolution under

linear time-independent Hamiltonians IT-I1= otq+[3p: Here, 01 (t,0) = e -it(°t_l+[315),and one gets classical

evolution, f(q,p,t) = f(q-13t, p+txt, 0), up to a phase, iff

where

lCqp>=6 10>, =6ap o -'

l_qp = eipcl-iql5

are phase space displacement operators, and

note the relations ([ ]+ denotes anticommutators, {

(8)

(9)

I_) and ,'X are some fiducial ket and operator. We now

}p. Poisson brackets):
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where

where

Oneverifies (11)

differentialequation.Wethenget,from(6)and(11):

f#(q,p;_(t)) - (_lI)qptlJ(t,0)l_) = e-iX(q,P,t) f_t(qt,Pt;_(0)),

fA(q,p;15(t))- Tr{I)qp,_qp -1lJ(t,0)[SlJ(0,t)}= f_(qt,Pt; 9(0)),

[I211, l)qp] = Hl(q,p)l)qp, -a2i[I2I1, 19qp]+ : {HI, I_qp}pB - @_p-_q)I)qp (10a)

i[I212, f)qp] = {H2, f)qph, a (10b)

H1,2 - H1,2(q,p). Using these results, and refering to (5), one finds that

l_l(0,t) f)qp = f)qtPt lJ2(0,t ) ei)C(q,P,t) (1 1)

l_I2 is the time evolutor for ft2, and x(q,p,t) is a phase determined by the equation

_tX- {H(t),X}pa = -_Hl(t), x(q,p,0) --0 (12)

by verifying that both sides of l_l(0,t)I)qplJ2(t,0) = f)qtPteiZ satisfy the same

ItS0 -- l_12(0,t)l_} (13)

"_t = 02(0,t)Al.J2(t,0) (14)

One sees that the function f, evolves classically iff ItS0 is stationary, i.e., if I_I2 is time-independent,

and I_) = IEn) is an eigenket of it. For instance, if I:I2 is a harmonic oscillator, and I_) = lEo) is the

ground state, then I_qp} are coherent states, and

f_(q,p; _t(t)) = e "i_(q'p't)+itE° f¢(qt,Pt; _t(0)) (15)

is the Husimi function [2], which is well known to evolve classically under that I212 of which I_) is

an eigenket. Clearly, no function f, linear in state vectors can possibly evolve classically if I?-I2 is

time-dependent. Consider now (14): Again, fa evolves classically iff ,_t is stationary: For instance, if

H2 is time-independent, and ,_ = IEnXEn'I or A = g(H2), then the evolution is classical - but only for

thatspecific time-independent I_I2. Is there an operator ,_ (apart from the unit operator) such that

l_I2(0,t) A lJz(t,0) = e'i_ t) A (=_ [I_I2(t), A] = _(t) ._ (t_(t)--_9/Ot) (16)

(9 a real phase) for time-dependent I_I2(t)? Yes, the parity operator l_I, since /Ill = -1]/1, pI_I = -I_lb

imply [I_I2, I_I]--0. Setting ,_ = l_I in (14) yields the Wignerfunction [1,3]

fw(q,P; P) = g'lTr{I)qp_ I)qp -1 [5}, fw(q,P; iS(t)) = fw(qt,Pt; [5(0)) (17)

The Wigner function is the only phase space function which evolves classically under (any) time-

dependent I2Iz(t). One can see this as follows: Represent any A by its Weyl symbol Aw(q,p), where
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theWeyl symbolof anoperatorA is definedas[3,4]

Aw(q,p) = 2Tr{I_qpl_'I I_qp "1 A} (18)

We want _t, hence its Weyl symbol, to be stationary for any I_I2(t). Now, just as the Weyl symbol

(17) of t5 evolves classically under H2(t), so does that of 2kt. The only possible way for (At)w(q,P)

to be stationary under classical evolution with different H2 's (e.g., with orbits which are ellipses or

hyperbolas of different eccentricities) is that it be be concentrated at the origin: We must thus have

Aw(q,p) = (consO_)(q)_(p); this implies [5b] that ,_ = (consO_.

3 Squeezing by a Periodically Modulated Harmonic Oscillator

The classical evolution of the Wigner function under quadratic I_I(t) is very useful for under-

standing the quantum in terms of the classical evolution. As an example, consider a harmonic oscillator

I7-I= _m-l_2 + _mo_2 = _co((zl_2 + cl2/oO, o_ = (moo) "l (19)

If ot=l (in suitable units), the classical orbits H(q,p) = constant are circles in the phase plane (q,p). If

0t # 1, the orbits are ellipses (Fig.l), the ratio of the q semi-axis to the p semi-axis being or. We will

now let (x alternate between two values, 3' and 3'-1 (where 3' > 1), at every quarter of a period 2_/_0,

while keeping co fixed (i.e., only m changes). Let ct = 3' -1 < 1 for the first quarter period: During that

time interval, a point initially on the positive q axis (beginning of trajectory 1 on Fig.2) moves to the

negative p axis, while receding away from the origin by a factor % Then let o_ = 3' > 1 during the next

quarter period: The point moves to the negative q axis, receding away from the origin by another factor

3'. And so on. One here has parametric amplification. On the other hand, points initially on the p axis

(trajectory 2) close in on the origin. Thus, classically, the phase plane gets squeezed into the rotating q

axis, by a factor Tat each quarter period. Whence a corresponding squeezing of quantum states [5a,6].
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4 Ehrenfest Theorem for the Quantum Uncertainties

The above concerned quadratic Hamiltonians. It will now be indicated that the Wigner-Weyl

(WW) representation allows to reinterpret Ehrenfest's theorem, and to extend it to quadratic obser-

vables, hence to the quantum uncertainties. This makes it possible to deduce features of the quantum

evolution from the classical evolution even in the case of arbitrary Hamiltonians. Let us first recall that

in the WW representation, expectation values of operators ,_ have the "classical" form [ 1,7]

(,_)- Tr{,_ 15} = _dqdp Aw(q,p) fw(q,P) (20)

In particular, the quantum expectations of/1 and t3 are

(_l) = _dqdp q fw(q,p), _) = .fdqdp p fw(q,P) (21)

and the uncertainty matrix is

Cqq = ((el- ((:1))2) = .fdqdp (q- (q))2 fw(q,P)

Cqp = Cpq = (_(_+P_I) - (_1)(13)) = fdqdp (q-(q))(p-(p)) fw(q,P) (22)

Cpp = ((13- (_))2) = _dqdp (p- (p))2 fw(q,P)

A quantum state (wave packet) may be roughly represented in phase space by an uncertainty ellipse

(U- (U))" C "1 (U - (U)) = 1

We also need the result [7]

where u=(q), C= /'Cqq C\Cpq _ppp) (23)

[,_,B]w(q,P) =i{Aw,Bw}pB(q,p) if ,_ or B isquadratic (24)

that is: The Weyl symbol of the commutator of two operators, one of which is quadratic, is equal to the

Poisson bracket of the individual Weyl symbols. Let now ,_, be an observable quadratic in /t and 13.

We then have, by (20) and (24), for any I_I(t):

_t(A) = -iTr{,_[I-?l, ill} = -iTr{ [,_,I2II _)} = _dqdp {Aw, Hw }PBfw(q,p,t)

= .fdqdpAw(q,p){Hw, fw}PB (,_quadratic,any I?-I) (25)

where in the last line we performed an integration by parts. Eq.(25) says that the ratc of change of the

expectation of a quadratic obscrvable is classical, in the sense that it is the same as if each point in
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Wigner phase space instantaneously followed a classical trajectory. This does not mean that (A)

evolves classically over finite time intervals, because fw(q,p,t) in (25) is the exact quantally evolved

Wigner function at time t, not one evolved classically during some finite time (unless I21 is quadratic);

more specifically, the first time derivative of (_,) is classical, but not the higher order derivatives. By

letting ,_ stands for ct or p in (25), one gets Ehrenfest's theorem:

_t (Cl) = _dqdp q{Hw, fw }r_ = Idqdp {q, Hw}wfw(q,p,t) = (_I2I/_)P) (26a)

_t(p) = _dqdp p{Hw, fw }is = _dqdp {p, Hw}wfw(q,p,t) = (-bI2I/bq) (26b)

The last expressions in (26a,b) are the usual statement of Ehrenfest's theorem [equivalent to (1) if 17t =

-_2/m + V(cl)], giving a formal quantum-classical analogy. The first expressions in (26a,b) tell us

much more: That the rates of change of (Cl) and (]_) are classical, but relative to a phase space

distribution function. Eq.(25) generalizes Ehrenfest's theorem to quadratic observables, and thus to the

uncertainties: Indeed, according to (21), (22) and (25), the uncertainty ellipse (23) evolves exactly as if

each point in Wigner phase space instantaneously followed a classical trajectory. For instance, if the

ellipse gets squeezed classically, during some small (infinitesimal) time interval, then so does it

quantally. In general, one may expect that if the classical motion during a finite time interval squeezes

the uncertainty ellipse, then so does the quantum evolution. The latter statement is of course rigorously

true if 121(0 is quadratic, in view of (17); it is also approximately true, in the case of arbitrary I2I(t), if

fw(q,p,t) is sufficiently localized on the scale of non-harmonic variation of H(q,p,t), for the evolution

of fw(q,p,t) is then approximately classical [5b].

Let us mention, finally, that Ehrenfest's theorem for quadratic observables can also be written in

a form corresponding to the last expressions in (26a,b), namely [5c]

_t(X) = ({Aw, Hw}ps(_t,P)w) (A quadratic, any I7t) (27)

where the subscript w on the function {Aw, Hw}pB(Cl,P) of the non-commuting operators ct and

signifies that they are ordered according to Weyl's ordering rule [4].
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